
Version 14.1

The tool of thought for expert programming

Dyalog for UNIX
Installation and
Configuration Guide

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2015 by Dyalog Limited

All rights reserved.

Version: 14.1

Revision: 1585 dated 20230217

Nopart of this publicationmay be reproduced in any form by any means without the prior written per-
mission of Dyalog Limited.

Dyalog Limitedmakes no representations or warranties with respect to the contents hereof and spe-
cifically disclaims any impliedwarranties of merchantability or fitness for any particular purpose.
Dyalog Limited reserves the right to revise this publicationwithout notification.

email: support@dyalog.com
http://www.dyalog.com

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The OpenGroup.

Windows, Windows Vista, Visual Basic andExcel are trademarks of Microsoft Corporation.

Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Mac OS® andOSX® (operating system software) are trademarks of Apple Inc., registered in the U.S.
and other countries.

Array Editor is copyright of davidliebtag.com

All other trademarks and copyrights are acknowledged.

iii

Contents

Introduction 1
Installation 2
Configuring a Console/terminal Window to support Dyalog APL for UNIX 8
Dyalog APL, RDP and VNC 10
Using PuTTY underWindows 11
Environment Variables 12
Configuring the Editor 19
Miscellaneous 21
The file command and magic 22
The Directory ~/.dyalog 26
NA under UNIX 27

Session logfile 30
Status window output 30
BuildID 31

Index 33

1

Introduction
This manual is designed to assist users of the non-GUI versions of Dyalog APL on
UNIX platforms. Although updated for Version 14.1 it applies applies to Versions
12.1 onwards.

Two versions of the interpreter are shipped with each Dyalog APL release: the devel-
opment version and the server version.

The server version has the same functionality as the development version, other than
that any attempt to read from the session, or use ⎕SM or use ⎕ARBIN will result in an
EOF INTERRUPT. It is mainly intended for using Dyalog APL as a server process,
where all I/O is processed using TCPSockets, or possibly via an auxiliary processor
written by the user. Dyalog recommends using Conga in preference to native
TCPSockets.

There are different licences associated with the development and server versions,
which affects how each might be distributed. For more information, please contact
sales@dyalog.com.

All examples are written assuming that the Korn shell is being used.

This manual is intended for users of Dyalog APL on UNIX. The Dyalog APL for
UNIX User Guide and the Dyalog APL for Raspberry Pi User Guide are also
UNIX specific. Users should also review the Dyalog APL Release Notes and the file
dyalog_readme.htm. All of these files and the other Dyalog-supplied documentation
can be found in the directory $DYALOG/help, and are available online at http://-
docs.dyalog.com/14.1. http://help.dyalog.com/14.1 contains an online help system
for the Dyalog APL documentation. These websites are updated from time to time,
and have the latest revisions of the documentation.

2

Installation
This manual covers the installation of the non-GUI version of Dyalog APL on AIX,
and on Linux distributions which use either .rpm or .deb files for installing software.
If you are using a Linux distribution which uses some other method, or you wish to
have a non-default installation, then there are some suggestions about how such an
installation might be completed.

Dyalog APL V14.1 is supplied in either 32 or 64 bit versions, and in either Classic or
Unicode editions. The installation procedure for Dyalog APL is the same in each
case. Note that the 64-bit versions of Dyalog APL will only run on a 64-bit operating
systems; the 32-bit versions of Dyalog APL will run on both 32 and 64 bit operating
systems.

It is assumed that in all cases the installation image has been downloaded into /tmp
on the local machine.

The default installation subdirectory will be formed as:

/opt/mdyalog/14.1/<APLWidth>/<APLEdition>

or, in the case of AIX:

/opt/mdyalog/14.1/<APLWidth>/<APLEdition>/<platform>

So for example, Dyalog APL Version 14.1 32 bit Unicode for POWER6 hardware on
AIX will by default be installed into

/opt/mdyalog/14.1/32/unicode/p6

whereas on a Linux distribution the equivalent version would be installed in

/opt/mdyalog/14.1/32/Unicode

This naming convention began with Version 12.0, and is planned to continue into
the future. This ensures that all versions and releases of Dyalog APL can be installed
in parallel.

Other than the Dyalog APL application shortcut (.desktop), Icon and the rpm/deb
related database information no files are created outside the Dyalog installation dir-
ectory; in particular, unlike earlier versions of Dyalog APL, no files are placed in /us-
r/bin.

When supplying updates or fixes, Dyalog issues a full installation image; this means
that any file under the installation subdirectory may be overwritten. It is therefore
strongly recommended that users do not alter issued files, as those changes could be
lost if an update is installed.

3

Installing under AIX
For each version of Dyalog APL on AIX three separate hardware-specific builds are
created for each of the four combinations of 32 or 64 bit versions, Classic or Unicode
editions. For 13.0 and prior these are p3, p5 and p6. For 13.1 onwards (as of Septem-
ber 2012) specific builds for p5, p6 and p7 are created.

$ su -
cd /opt
cpio -icdvum </tmp/dyalog-20090901-64-unicode-p6.cpi
/opt/mdyalog/14.0/64/unicode/p6/make_scripts
exit

Dyalog APL is now installed. To run as any user, type

$ /opt/mdyalog/14.0/64/unicode/p6/mapl

Notes:

l Version 14.0 onwards are compiled on AIX6.1: the 32 bit version of 14.0
has also been tested on AIX5.3 Technical Maintenance Level 9

Installing on an RPM-based Linux Distribution
$ su -
rpm --install /tmp/dyalog-121C32r14707-20120921.linux.i386.rpm
/opt/mdyalog/14.0/32/classic/make_scripts
exit

Dyalog APL is now installed. To run as any user, type

$ /opt/mdyalog/14.0/32/classic/mapl

Notes:
l It may be necessary to use the --force flag or equivalent if an earlier version

of Dyalog APL is to be installed on the same server as a later version. This
is safe since the versions have no files in common.

l It has been noticed that in some circumstances the 32-bit installs fail on 64-
bit operating systems due to a missing ncurses package. However, it appears
that that package is indeed installed. What is required however is the 32-bit
version: once installed, Dyalog APL will then install.

l Version 14.0 has been successfully installed on RHEL5/Centos5 and
SUSE12.3 and later versions of these distributions.

4

Installing on a DEB-based Linux Distribution
$ sudo su -
dpkg --install dyalog-unicode_14.0.16658_i386.deb
exit

Dyalog APL is now installed. To run as any user, type

$ /opt/mdyalog/14.0/32/unicode/mapl

Notes:
l It may be necessary to use the --force flag or equivalent if an earlier version

of Dyalog APL is to be installed on the same server as a later version. This
is safe since the versions have no files in common.

l If dpkg generates dependency errors, run apt-get install -f (as root)
l It has been noticed that in some circumstances the 32-bit installs fail on 64-

bit operating systems due to a missing ncurses package. However, it appears
that that package is indeed installed. What is required however is the 32-bit
version: once installed, Dyalog APL will then install.

Installing in a non-default location
It is possible to install Dyalog APL for UNIX in non-default locations, without the
need for root privileges.

For all UNIXes,

cd <directory under which I wish to install Dyalog APL>

For AIX:

cpio -icvdum <installation_image.cpi

For .deb based Linux distributions:

/usr/bin/dpkg --extract installation_image.deb .

For .rpm based Linux distributions

rpm2cpio installation_image.rpm | cpio -icdvum

For all UNIXes:

find opt/mdyalog -name make_scripts -exec {} \;

This last step generates the mapl script; should you chose to move the installation dir-
ectory, it will be necessary to re-run the make_scripts script so that the environment
variable $DYALOG is set correctly.

5

Minimal Installation
An absolutely minimal installation of the development version of Dyalog APL con-
sists of something similar to one of the two following examples. The maximumwork-
space size would be 4MB, and all workspaces and auxiliary processors would have
to be accessed using either absolute or relative pathnames. It is not necessary to have
superuser permissions to perform this installation, since no files are being written to
directories for which the user does not have write permission.

In this example it is assumed that a full install has been completed of the 32-bit
Unicode version on Linux. Once the files have been extracted, then the installation
could be removed. It is also assumed that suitable preparation of the terminal envir-
onment has been completed (see Terminals and Terminal Emulators).

To set up:

$ mkdir dyalog_min
$ cd dyalog_min
$ mkdir aplkeys
$ mkdir apltrans
$ cp /opt/mdyalog/14.0/32/unicode/dyalog .
$ cp /opt/mdyalog/14.0/32/unicode/aplkeys/xterm aplkeys
$ cp /opt/mdyalog/14.0/32/unicode/apltrans/xterm apltrans
$ cp /opt/mdyalog/14.0/32/unicode/apltrans/file apltrans

To run:

$ cd dyalog_min
$ export APLKEYS=`pwd`/aplkeys
$ export APLTRANS=`pwd`/apltrans
$ APLK0=xterm APLT=xterm ./dyalog

Dyalog APL/S Version 14.0.0
Unicode Edition
Sun Oct 18 13:45:21 2009
clear ws

16 16⍴⎕av
...

or

To set up:

$ mkdir dyalog_min
$ cd dyalog_min
$ cp /opt/mdyalog/14.0/32/unicode/dyalog .
$ cp /opt/mdyalog/14.0/32/unicode/aplkeys/xterm xterm.in
$ cp /opt/mdyalog/14.0/32/unicode/apltrans/xterm xterm.out
$ cp /opt/mdyalog/14.0/32/unicode/apltrans/file .

6

To run:

$ cd dyalog_min
$ export APLKEYS=`pwd`
$ export APLTRANS=`pwd`
$ export APLK=xterm.in
$ export APLT=xterm.out
$ export APLT10=file
$ export APLT11=file
$./dyalog

Dyalog APL/S Version 14.0.0
Unicode Edition
Sun Oct 18 13:45:21 2009
clear ws

16 16⍴⎕av
...

In the first example the input and output translate tables are in separate sub-
directories, so there is no need to override the TERM variable with values for APLK
and APLT.

In the second example the two translate tables both are named differently from the
value of $TERM, so each has to be defined. Note also that it may be necessary to
have the file output translate table present: like other UNIX processes, Dyalog APL
inherits the open file descriptors of its parent process, and each of themwill need to
have a translate table associated with it. So for example, under KDE4 on openSUSE,
a Konsole terminal window has file descriptors 0 1 2 10 11 open; Dyalog APL will
need therefore to have APLT10 and APLT11 defined too.

Further details regarding configuring the Dyalog APL environment can be found in
the Starting APL section.

Deinstalling Dyalog APL
In the following examples, it is assumed that only Dyalog APL 14.0 64-bit unicode
is installed on the server; the commands to delete directories will need to be more spe-
cific if multiple versions of Dyalog APL are installed.

Should it be necessary to deinstall Dyalog APL, then the process is:

Deinstalling under AIX
$ su -
cd /opt
rm -rf mdyalog/14.0

7

Deinstalling on an RPM-based Linux Distribution
$ su -
rpm -e dyalog.32.classic-14.0-20090901
cd /opt
rm -rf mdyalog/14.0
exit

Deinstalling on a DEB-based Linux Distribution
$ sudo su -
apt-get purge dyalog-unicode-140
cd /opt
rm -rf mdyalog/14.0
exit

Upgrading APL
Applying a later release of the same version
In general Dyalog will issue a new installation image if a problem is discovered
which requires a new version of the interpreter. Dyalog recommends that the entire
installation image is installed over the existing installation, but that is not essential.
Particularly in a live environment it may be preferable to install only a revised inter-
preter. This can be done by extracting the individual files from the installation image,
and copying them into the correct place in the installation directory tree. To apply a
fix image, run the appropriate installation command with the -force option if appro-
priate. Be aware: the process of installing a later installation image over an already
installed version of Dyalog APLWILL result in all files being overwritten. If you
have changed any, it will be necessary to take copies of them, and then to reapply
local alterations to the new files. Please contact support@dyalog.com for further
advice.

Upgrading from an earlier version
Newer versions of Dyalog APL will be placed in new subdirectories, rather than in
the same location as the currently installed versions. This means that both old and
new versions can be run in parallel, but extra disk space in /opt will be required to
cater for the multiple releases. Note however that once a workspace has been saved in
a later version of Dyalog APL, it is most likely that it will not be possible to)LOAD
or)COPY the workspace by an earlier version. Once happy with the new version,
then de-install the earlier version.

8

Configuring a Console/terminal Window to support
Dyalog APL for UNIX

In order to support Dyalog APL for UNIX in a console/terminal window under a
Linux window manager, it is necessary to install and configure the Dyalog APL key-
board support. Additionally it is possible to install the APL385 Unicode font, to be
used instead of the built in fonts which include APL characters.

Keyboard support
Dyalog submitted APL Language keyboard support to Xorg at the end of 2011; most
Linux distributions released after mid-2012 have the Dyalog APL keyboard support
included with the distribution. Such distributions include openSUSE 12.2, Ubuntu
12.10 and Fedora 17.

Details of how to configure the keyboard under KDE4 appear below; keyboard sup-
port for other window managers (such as Gnome and Unity) is in a state of flux. The
latest information about the process of installing and configuring Dyalog APL key-
board support for such environments can be found at:

http://www.dyalog.com/forum/viewtopic.php?f=20&t=210

or by contacting Dyalog support. The same resources can be used to obtain inform-
ation and guidance on installing keyboard support for earlier Linux distributions.

Configuring the APL keyboard under KDE4
(These instructions were drawn up using openSUSE 12.2; other KDE4 environments
may vary slightly)

l Select Configure Desktop
l Select Input Devices
l Select Keyboard
l Select Layouts
l Select the "Configure layouts" tickbox
l Select Add
l In the Add Layout dialog box, select the Layout "APL Keyboard Symbols",

and then the "dyalog" option
l Close the Add Layout dialog box
l The list of layouts should now include APL Keyboard Symbols, with one of

the dyalog variants.
l Click on "Main shortcuts" in the "Shortcuts for Switching Layout" group;

where possible, Dyalog recommends selecting "Any Win key (while
pressed)" so that either Windows key causes APL characters to be generated.

9

APL font support
APL characters are available under Linux window managers. However some of the
characters may appear inelegant; most noticeable are very small "⋄" and overly large
"⌶". To resolve this, it is possible to use the Freemono fonts (these are installed by
default on some distributions (such as openSUSE)), or to download and install the
APL385 Unicode font. This font is freely downloadable from:

http://www.dyalog.com/resources

Details of how to install the font will appear in the documentation for your window
manager.

10

Dyalog APL, RDP and VNC
Due to the different ways that Microsoft Windows and Linux/UNIX handle key-
boards, it is not possible to use RDP or VNC or X-Windows from a Windows client
to control a Dyalog APL session running under a UNIX window manager. In par-
ticular, all of the X-Window clients that Dyalog is aware of do not fully support xkb
key mappings.

It is possible to use VNC from a Linux client to connect to a remote Linux desktop
and control an APL session running there; the keyboard support will however need
to be added to the local machine.

11

Using PuTTY under Windows
Dyalog APL for UNIX comes with support for the PuTTY terminal emulator. PuTTY
is freely downloadable, supports ssh and telnet protocols, and supports Unicode key-
strokes and fonts. To be able to generate and see APL characters it is also necessary
to install the Dyalog UnicodeIME and the APL385 Unicode font.

Downloading and installing the Dyalog UnicodeIME
The UnicodeIME can be freely downloaded from http://www.dyalog.com/apl-font-
keyboard.htm. It is also included with all Unicode Windows versions of Dyalog from
13.0 onwards. There are two versions of the UnicodeIME; one for 32 bit Windows,
and one for 64 bit; please ensure that the correct version is downloaded.

Details of how to install the UnicodeIME are on the download webpage.

Downloading and installing the APL385 font
The APL385 can be freely downloaded from http://www.dyalog.com/apl-font-key-
board.htm. Details of how to install the font appear on the download webpage.

Downloading and Installing PuTTY
PuTTY is available from http://www.chiark.greenend.org.uk/~sgtatham/putty. Full
details of how to download and install PuTTY, along with the licence terms and con-
ditions are available from the above URL.

Configuring PuTTY to support Dyalog APL for UNIX
Firstly ensure that you are able to login to the UNIX server which has Dyalog
APL installed on it. If you are using an AIX server, it is recommended that in the Key-
board category you set the backspace key to Control-H.

12

For APL support the follow settings are required:

Window/Appearance Font settings/Font: set to APL385 Unicode

Window/Translation/Character set translation on received data: set Received data
assumed to be in which character set to UTF-8

Having set these values, it is recommended that you save the settings; if you will
need to connect to multiple servers, it is recommended that you save the above set-
tings as the default options (Highlight the "Default Settings" in Saved Sessions and
click on Save).

Environment Variables
Environment variables are used to configure various aspects of Dyalog APL. The
complete list appears in the Dyalog APL Users Guide; this section discusses those
variables which are of particular importance to the Non-GUI versions of Dyalog
APL, and lists those that have meaning to the UNIX versions. Additionally there
some non-GUI-specific variables which are described below and some which either
do not apply, or may not work as the user might at first expect.

Under UNIX, all environment variables should appear in UPPER CASE. For
example, to set the default value of ⎕ml to 3, then

$ export DEFAULT_ML=3

If a Registry entry described in the User Guide has a back-slash "\" in its name, this
should be replaced with an underscore in the equivalent environment variable.

Many of these environment variables are set in the mapl script; their values are either
appropriate for the installation location of Dyalog APL, or are set to define reas-
onable default values.

The environment variables are broken down into several tables:

l Table E1: The most commonly defined and used for non-GUI versions of
Dyalog APL under UNIX. Most of these variables are essential for a usable
APL session

l Table E2: Variables used to control default values in the workspace
l Table E3: Variables used to configure buffers and logfiles etc
l Table E4: Miscellaneous Variables used by non-GUI Dyalog APL
l Table E5: Editor-related environment variables
l Table E6: RIDE-related environment variables
l Table E7: SALT and User Command-related environment variables

13

Table E1: Commonly used Variables
Variable Notes

TERM
APLK
APLK0
APLT
APLTn

Define the input and output translate
tables used by Dyalog APL. The values
of APLK0 and APLTn override the
values of APLK and APLT if set, and
they in turn override the value of
(Unicode) default, or (Classic) TERM
if set.

APLK is for input translation, APLT
for output translation.

These are used in conjunction with ..

APLKEYS
APLTTRANS

Define the search path for the input and
output translate tables respectively. If
unset, the interpreter will default to
$DYALOG; if $DYALOG too is not
set, will default to /usr/dyalog.

APLNID

This variable is ignored by the UNIX
versions of Dyalog APL: ⎕ai and ⎕an
pick up their values from the user's uid
and /etc/passwd.

APLSTATUSFD

If set, this defines the stream number on
which all messages for the Status
Window appear. It is then possible to
redirect this output when APL is
started.

If unset, the output will appear in the
same terminal window as the APL
session, although it is not part of the
session; such output can be removed
by hitting SR (Screen Redraw - often
defined to be Ctrl-L).

14

Variable Notes

LIBPATH

A suitable entry for the Conga
libraries needs to be added to the
LIBPATH variable if Conga is to be
used. For more information see the
Conga Guide.

ERRORONEXTERNALEXCEPTION

By default, any error when calling
⎕NA will result in APL terminating; if
ERRORONEXTERNALEXCEPTION is
set to 1, then APL will instead
generate an event 91:
EXTERNAL DLL EXCEPTION. Be
aware however that the workspace
may become corrupted. This is best
used when developing ⎕NA code
rather than in production.

MAXWS

Defines the size of the workspace that
will be presented to the user when
Dyalog APL is started. A simple
integer value will be treated as being
in KB. K, M and G can be appended
to the value to indicate KiB, MiB and
GiB (binary) respectively. If unset, the
default value is 4096KB.

WSPATH

Defines the search path for both
workspaces and Auxiliary processors.

If unset, there is no default value.
Workspaces and APs that are not on
the WSPATH can be accessed using
absolute or relative pathnames.

15

Table E2: Default workspace values
Variable Notes

DEFAULT_DIV Default value for ⎕div in a clear workspace.

DEFAULT_IO Default value for ⎕io in a clear workspace.

DEFAULT_ML Default value for ⎕ml in a clear workspace.

DEFAULT_PP Default value for ⎕pp in a clear workspace.

AUTO_PW
DEFAULT_PW

⎕pw is set by the interpreter when it starts, or when the
session window is resized. Under UNIX if the terminal
window is resized, the session will be resized when the
interpreter next checks for input.

DEFAULT_RL Default value for ⎕rl in a clear workspace.

DEFAULT_RTL Default value for ⎕rtl in a clear workspace.

DEFAULT_WX

Default value for ⎕wx in a clear workspace.

Note that although the UNIX versions of Dyalog APL do
not have GUI objects, ⎕se is present, and the value of
⎕wx will affect the programmer's ability to run
expressions such as ⎕se.PropList.

For numeric values, the interpreter takes the value of the environment variable, and
prepends a "0" to that string. It then parses the string, accepting characters until the
first non-digit character is reached.

This string, now of digits only, is converted into an integer. If the resulting value is
valid, then that is the value that will be used in the workspace. If the resulting value
is invalid, then the default value will be used instead.

16

Table E3: Variables used to configure buffers and logfiles etc
Variable Notes

HISTORY_SIZE The size of the prior line buffer

INPUT_SIZE The size of the buffer used to store lines marked for
execution

LOG_FILE
LOG_FILE_INUSE
LOG_SIZE

These three variables determine the name of the session
log file (default ./default.dlf), whether a log file is
created or not, and the size of the log file in KB. Be
aware: the session log file is not interchangeable
between the different editions and widths of APL; in a
mixed environment it is strongly recommended to use a
different log file for each version.

PFKEY_SIZE
The size of the buffer used to hold ⎕pfkey definitions:
if this is too small, an attempt to add a new definition
will result in a LIMIT ERROR.

SESSION_FILE
Defines the location of your session file; session file
support was added in Dyalog 13.1. The default value is
$DYALOG/default.dse

To set values, use K to indicate KB. Note that the buffers will contain other inform-
ation, so the buffer size will not be exact. Note also that multibyte Unicode char-
acters will take up more space than single byte characters, and that 32 and 64 bit
versions of Dyalog APL can require different amounts of space for holding the same
information.

Example:

$ HISTORY_SIZE=4K my_apl_startup_script

17

Table E4:Miscellaneous Variables used by non-GUI Dyalog APL
Variable Notes

APL_
TEXTINAPLCORE

If set with the value 1 the "Interesting Information"
section is included in an aplcore file. Otherwise this
section is omitted. By default the interpreter has this set
to 0; it is the default APL script which sets it to 1.

AUTOFORMAT
TABSTOPS

If AUTOFORMAT is 1, then control structures will be
shown with indents, set at TABSTOPS spaces; the
changes are reflected in the editor window when the RD
(ReDraw) command key is hit.

AUTOINDENT

AUTO_PW

Introduced in 13.0. With AUTO_PW=0, ⎕pw remains
fixed at the size of the terminal window when APL was
started. When set to 1, or unset, ⎕pw alters each time the
terminal window is resized.

DYALOG

This variable is defined in the supplied mapl startup
script, and is used to form the default values for
APLKEYS, APLTRANS,WSPATH etc.

If it is necessary to identify the location of the Dyalog
executable, then a more reliable method is to determine
the full path name from the appropriate file in the
/proc/<process_id_of_APL_session>/ subdirectory or
from the output of ps.

These are the remaining variables listed in the User Guide which are effective in the
non-GUI UNIX versions of Dyalog APL

Table E5: Editor-related environment variables
Variable Notes

EDITOR_
COLUMNS_*

See Configuring the Editor on page 19. Can be one of

EDITOR_COLUMNS_CHARACTER_ARRAY
EDITOR_COLUMNS_CLASS
EDITOR_COLUMNS_FUNCTION
EDITOR_COLUMNS_NAMESPACE
EDITOR_COLUMNS_NUMERIC_ARRAY

LINES_ON_
FUNCTIONS

Whether line numbers are on or off. This is used in
conjunction with the variables which determine which
features of the editor are enabled.

Table E6:RIDE environment variables

18

Variable Notes

APL_
LANGUAGE_
BAR_FILE

This specifies the location of the XML file which
contains the definitions of the language bar which
appears in the RIDE client

RIDE_LISTEN

This specifies the range of IPv4 addresses from which a
RIDE client may connect, and the port number to be
used. The default value is 0.0.0.0:4502. If the variable is
unset, RIDE is not enabled in the interpreter.

Dyalog Ltd. intends to release the RIDE (Remote IDE) client sometime after the
release of Dyalog APL 14.0; the interpreter may need to be updated at the point
when RIDE is released for full RIDE support.

Table E7: SALT and user commands related environment variables

Variable Notes

SESSION_FILE Specifies the location of the file containing ⎕SE. The
default value is $DYALOG/default.dse

UCMDCACHEFILE Specifies the location of the user command cache file.
Defaults to ~/.dyalog/UserCommand20.cache

Further information about SALT and user commands appear in the Dyalog APL User
Commands Reference Guide and the Dyalog APL SALT Reference Guide.

19

Configuring the Editor
The editor in non-GUI versions of Dyalog APL can be considered to have 5 separate
functional columns. Below is the contents of the editor window, which shows the
namespace ns, which has two traditional-style functions and one dfn. The statement
5 ⎕STOP 'ns.fn1' has been run too:

[0] :Namespace ns
[1] [0] ├ ∇ r←fn1 a
[2] [1] ├ :If a=1
[3] [2] │ r←1
[4] [3] │ :Else
[5] [4] ├ :If today≡'Friday'
[6] [5] ○│ r←2
[7] [6] ├ :EndIf
[8] [7] ├ :EndIf
[9] [8] ├ ∇
[10]
[11] [0] dfn←{⍺+⍵}
[12]
[13] [0] ├ ∇ r←a fn2 w
[14] [1] │ r←a+w
[15] [2] ├ ∇
[16] :EndNamespace

This is formed of 5 separate columns:

┌────┬───┬───┬──┬────────────────────────────┐
│C1 │C2 │C3 │C4│C5 │
├────┼───┼───┼──┼────────────────────────────┤
│[0] │ │ │ │:Namespace ns │
│[1] │[0]│ │├ │ ∇ r←fn1 a │
│[2] │[1]│ │├ │ :If a=1 │
│[3] │[2]│ ││ │ r←1 │
│[4] │[3]│ ││ │ :Else │
│[5] │[4]│ │├ │ :If today≡'Friday'│
│[6] │[5]│ ○││ │ r←2 │
│[7] │[6]│ │├ │ :EndIf │
│[8] │[7]│ │├ │ :EndIf │
│[9] │[8]│ │├ │ ∇ │
│[10]│ │ │ │ │
│[11]│[0]│ │ │ dfn←{⍺+⍵} │
│[12]│ │ │ │ │
│[13]│[0]│ │├ │ ∇ r←a fn2 w │
│[14]│[1]│ ││ │ r←a+w │
│[15]│[2]│ │├ │ ∇ │
│[16]│ │ │ │:EndNamespace │
└────┴───┴───┴──┴────────────────────────────┘

20

Functional
Column

Value
(see
below)

Purpose

C1 4 Line numbers for entire object

C2 64 Line numbers for functions etc. within scripted
namespaces

C3 2 Trace/Stop points

C4 8 Control Structure Outlining

C5 16 Text (or content)This value is ignored; this column is
always present

It is possible to control at startup time which of these columns are visible. By default,
for all types of object, only the text column is visible; this can be overridden on a
per-object basis by setting one or more of the EDITOR_COLUMNS_ variables listed
in Table E5. The value of these variables is the sum of the values for each of the
columns which are desired.

Examples:
EDITOR_COLUMNS_NAMESPACE=94 shows all columns (the first example in
this section)

Various values for EDITOR_COLUMNS_FUNCTION

Value Editor window appearance

0
fn1 a
:If a=1

b←2
:EndIf

22

[0] fn1 a
[1] :If a=1
[2] ○ b←2
[3] :EndIf

26
fn1 a

 ├ :If a=1
○│ b←2
 ├ :EndIf

40
[0] fn1 a
[1] ├ :If a=1
[2] ○│ b←2
[3] ├ :EndIf

21

Miscellaneous
Running from scripts
Dyalog APL can be run with input being directed from a script file, and output being
redirected as well.

The script file needs to be built in such a way that it contains valid input according
to the input translate table that is defined in the APLK variable.

The classic edition of Dyalog APL expects that the input script by default uses Ctrl-
O and Ctrl-N to swap between APL and ASCII characters, and Ctrl-H is used to cre-
ate overstrikes. Be aware that when editing such an input file, cut and paste of ^H, ^N
or ^O may well result in the two character sequences being copied, rather than the
single character Ctrl-H, Ctrl-N and Ctrl-O.

The Unicode edition by default expects that the input file has unicode characters in
it; a unicode-aware editor is therefore required. Note however that applications such
as Notepad will add BOMs (Byte OrderMarkers) to the unicode text; these must be
removed as the Dyalog APL input translate table does not have BOMs defined in it.

The example below shows the same set of APL expressions as they would appear in a
script file for Classic and Unicode editions: it is rather easier to read the Unicode edi-
tion's input !

Classic example:
^O(2^NLnqK.K K^OGetBuildID^NK^O),(^NK.KLwgK^OAPLVersion^N
K^O)
^Ovar^N[1+1 J^HC^O Check input from file: Classic
)si
^N"si
^Nloff

Unicode example:
(+2⎕nq'.' 'GetBuildID'),('.'⎕wg'APLVersion')
var←1÷1 ⍝ Check input from file: Unicode
)si
)si
⎕off

22

The file command and magic
All Dyalog APL binary files have a unique magic number: the first byte is always
0xAA (decimal 170), and the second identifies the type of Dyalog file. Additional
bytes may in some cases be used to further identify the type, version and state of the
file. UNIX systems include the file command which use the information in the
magic file to describe the contents of files.

magic and AIX
AIX still uses a very early version of magic, so it is not possible to give as much
information about Dyalog APL files as on Linux.

Dyalog provides a file, magic, which is located in the top level installation dir-
ectory of Dyalog APL. To use this file to extend the capabilities of the file com-
mand either run

file -m /opt/mdyalog/14.1/32/classic/p5/magic *

or catenate the contents of /opt/mdyalog/14.1/32/classic/p5/magic onto /etc/magic,
and then run

file *

Example:
$ file -m /opt/mdyalog/14.1/32/classic/p6/magic *
1_apl_j1: Dyalog APL component file 64-bit level 1 journaled non-
checksummed
1_apl_j2: Dyalog APL component file 64-bit level 2 journaled chec
ksummed
1_apl_qfile: Dyalog APL component file 64-bit non-journaled non-c
hecksummed
1_big1: Dyalog APL component file 64-bit level 2 journaled checks
ummed
1_big2: Dyalog APL component file 64-bit level 1 journaled checks
ummed
apl64u: Dyalog APL workspace type 12 subtype 4 64-bit unicode big-
endian
aplout: Dyalog APL workspace type 12 subtype 0 32-bit classic lit
tle-endian
aplcore: Dyalog APL workspace type 12 subtype 4 32-bit classic li
ttle-endian
colours: Dyalog APL workspace type 12 subtype 4 32-bit classic li
ttle-endian
core: data or International Language text
signals: Dyalog APL workspace type 12 subtype 4 32-bit classic li
ttle-endian
utf8: Dyalog APL workspace type 12 subtype 4 32-bit unicode littl
e-endian

magic and Linux

23

Most Linux distributions include details about Dyalog-related files in their magic
files; Dyalog has submitted two versions of the magic file for inclusion in dis-
tributions. To check whether your Linux distribution has the more recent version, cre-
ate a journaled component file and then run the file command against that
component file. The two examples below show the output with the earlier and later
versions of magic in use.

Example, using the older default magic file:
$ file *
1_apl_j1: data
1_apl_j2: data
1_apl_qfile: data
1_big1: data
1_big2: data
apl64u: \012- Dyalog APL\012- workspace\012- version 12\012- .4
aplout: \012- Dyalog APL\012- workspace\012- version 12\012- .0
aplcore: \012- Dyalog APL\012- workspace\012- version 12\012- .4
colours: \012- Dyalog APL\012- workspace\012- version 12\012- .4
core: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV), SVR
4-style
signals: \012- Dyalog APL\012- workspace\012- version 12\012- .4
utf8: \012- Dyalog APL\012- workspace\012- version 12\012- .4

Example, with more recent magic file:
$ file *
1_apl_j1: Dyalog APL component file 64-bit level 1 journaled non-
checksummed
1_apl_j2: Dyalog APL component file 64-bit level 2 journaled chec
ksummed
1_apl_qfile: Dyalog APL component file 64-bit non-journaled non-c
hecksummed
1_big1: Dyalog APL component file 64-bit level 2 journaled checks
ummed
1_big2: Dyalog APL component file 64-bit level 1 journaled checks
ummed
apl64u: Dyalog APL workspace type 12 subtype 4 64-bit unicode big-
endian
aplout: Dyalog APL workspace type 12 subtype 0 32-bit classic lit
tle-endian
aplcore: Dyalog APL workspace type 12 subtype 4 32-bit classic li
ttle-endian
colours: Dyalog APL workspace type 12 subtype 4 32-bit classic li
ttle-endian
core: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV), SVR
4-style, from '/opt/mdyalog/14.0/32/classic/dyalog'
signals: Dyalog APL workspace type 12 subtype 4 32-bit classic li
ttle-endian
utf8: Dyalog APL workspace type 12 subtype 4 32-bit unicode littl
e-endian

24

The most recent version of the magic file can be found in the top level of the install-
ation directory; see the man page for the file command for details of how to update
the systemmagic file, or use the syntax described in the /etc/magic and AIX section
above to override the default magic file with the one supplied in the installation dir-
ectory.

25

⎕SE, User Commands and SALT
Summary
Support for user commands is now included in UNIX versions of Dyalog APL. Many
of the user commands which were originally written for running underMicrosoftWin-
dows will run under the various flavours of UNIX.

Under UNIX there is no autocompletion of user command names.

The SALT code resides in SE, which is saved in a session file. The location of the
session file is controlled by the environment variable SESSION_FILE; by default this
file is $DYALOG/default.dse. Setting SESSION_FILE=/dev/null results in an empty
⎕SE and SALT being disabled.

See the Dyalog APL User Commands Reference Guide and the Dyalog APL SALT
Reference Guide for more information.

Caching User Command information
When a Dyalog APL session is started, SALT is loaded, and checks the details of all
of the files which contain user commands with a previously cached version of this
information. If Dyalog APL has never been run before, or the cache file does not
exist, SALT rebuilds the cache file. This can take a few seconds, especially on the
Raspberry Pi.

By default in Version 14.0 the cache file is called ~/.dyalog/UserCommand20.cache.

This can be overridden by specifying the environment variable UCMDCACHEFILE.

It is expected that the structure of files in ~/.dyalog will change in future versions of
Dyalog APL.

Assigning Contents of Session Log
It is possible to assign the contents of the Session Log to a variable:

z←'⎕se'⎕wg'Log

26

The Directory ~/.dyalog
In Version 14.0 Dyalog APL makes use of the directory ~/.dyalog. The contents of
this directory are expected to be extended in future versions of Dyalog APL, and
allow for multiple versions and editions of Dyalog APL to be run concurrently.

In Version 14.0, this directory is created by default when APL is run for the first time.
It is the directory which contains the user command cache file, which by default is
called UserCommand20.cache.

The file containing the SALT settings is also saved in this directory; it is called
SALT.settings.

27

⎕NA under UNIX

Introduction
⎕NA is fully supported under UNIX; the Conga communications package for
example is a shared library on all platforms.

⎕NA supports user-written shared libraries and also system-supplied shared libraries.
Dyalog APL under UNIX is supplied with a shared library, dyalog32.so or dyalo-
g64.so which contains the same functions as the DLLs which are described in the
⎕NA documentation in the Dyalog APL Language Reference. Additionally, the func-
tion getlasterror is included; this returns the error code at the point when the
called function failed (which may be different from its value at the point where a pre-
vious error occurred).

It is necessary to specify the complete name of the file containing the shared library,
no extension is added by Dyalog APL.

When developing code using ⎕NA it may be useful to set the environment variable
ERRORONEXTERNALEXCEPTION= 1.When this is set, Dyalog APL will gen-
erate an event 91, EXTERNAL DLL EXCEPTION rather than a syserror should a call
on a functions defined by ⎕NA be ill-specified. It should be noted however that the
workspace may become corrupt, so it is not recommended to run in production with
this variable set.

System Shared Libraries
On AIX many system library functions appear in libc.a.

When calling system shared libraries under AIX, you must refer to them as:

64-bit: libc.a(shr_64.o)

32-bit: libc.a(shr.o)

It is not always possible to access all library functions - on AIX for example it is not
possible to access memcpy() or strncpy(). it is for this reason that dyalog*.so includes
MEMCPY and STRNCPY.

On Linux, it is a little more difficult to location the libc.so file; the function libc in
the supplied workspace quadna can be used to locate this file.

28

Definitions
In the remainder of this section references are made to the APL variables shared-
lib and dyalib; the definitions for both vary between AIX and Linux, and
between 32 and 64 bit interpreters.

Under AIX, sharedlib is defined as:

sharedlib←'libc.a(shr_64.o)' ⍝ 64 bit
sharedlib←'libc.a(shr.o)' ⍝ 32 bit

Under Linux, it is necessary to identify the shared library:

)copy quadna libc
sharedlib←libc ⍬

For all UNIX platforms, the dyalog shared library is identified as

dyalib←'dyalog64.so' ⍝ 64 bit
dyalib←'dyalog32.so' ⍝ 32 bit

Example 1
getpid() is common to all UNIX platforms; it returns an int which is the process ID of
the current process. It is defined to be

pid_t getpid(void)

where pid_t is a 4-byte integer.

The APL code to instantiate this function is

⎕na 'I4 ',sharedlib,'|getpid'

Example 2
This is a slightly more complex example, which uses the STRNCPY function in the
Dyalog-supplied shared library to retrieve the value of a variable which is referenced
by a pointer, returned from the system library function:

getenv()returns a pointer to the value of the environment variable which is the argu-
ment of the function. It is defined to be

char *getenv(const char *name)

∇r←GetEnv envvar;getenv;P;get
r←''
⎕NA'P ',sharedlib,'|getenv <0T1[]'
'get'⎕NA dyalib,'|STRNCPY >0U1[] P U4'
P←getenv⊂'UTF-8'⎕UCS ⎕UCS envvar
→0⍴⍨P=0

29

r←'UTF-8'⎕ucs get 4096 P 4096
∇

GetEnv'MAXWS'
4G

Note: the call to STRNCPY has been defined to return a vector of integers so that the
result can be passed directly to ⎕UCS.

geterrno
The dyalog shared libary under UNIX includes the function geterrno. This returns
the current value of errno; be aware that it may not have the same value as at the
point when the error was raised. To use this function:

⎕na 'I ',dyalib','|geterrno'
geterrno

5

Shared libraries and APL threads
Any shared library function must mask out all signals for new threads which it cre-
ates. Failure to do so will result in a catastrophic failure of APL's signal handling.

30

Session logfile
By default the session logfile is called default.dlf, and if necessary will be created in
the current working directory. (The mapl script supplied by Dyalog overrides this).

Status window output
By default under UNIX what would appear in the status window in the GUI versions
appears in the same terminal window as the APL session, but the text is not part of
the session. If such text appears, the APL session can be redrawn using the SR com-
mand, thus removing the status window text.

It is possible to redirect the status window output; to do so select an unused stream
number as the stream have the status window output appear on, and then redirect that
stream. Note that it will be necessary to associate a valid output translate table (usu-
ally apltrans/file) with that stream.

Example:

$ export APLSTATUSFD=9
$ export APLT9=file
$ mapl 9>/dev/null

More useful may be to redirect the status window output into a file, and in another ter-
minal window run tail -f on that file.

31

BuildID
Each interpreter has its own unique BuildID. This is a 32-bit checksum of the progam
file which is the Dyalog APL interpreter. This checksum allows Dyalog Ltd. support
staff to uniquely identify the interpreter and from that determine the version, edition,
platform etc of the interpreter.

For that reason, Dyalog Ltd. support staff ask that whenever an issue is raised with
them that the BuildID is included in all communications.

The BuildID is included in binary form in any aplcore that is generated; if a core file
is created, then is it possible to identify the BuildID using the following command:

$ strings -a -n 14 core | grep “BuildID=”

Additionally, the BuildID is included in the "Interesting Information" section of
aplcore files provided that the environment variable APL_TEXTINAPLCORE is set
to 1.

The BuildID can be identified both fromwithin the interpreter (using the GetBuildID
method), and also from the BuildID executable which is supplied with the product
on UNIX.

Both of these methods can be used for any file;they are useful and very fast ways of
keeping track of workspaces versions etc. although md5sum and others may be more
appropriate.

Examples:
At the command line:

$ cd /opt/mdyalog/12.1/32/classic/p6
$./BuildID dyalog
70a3446e
$./BuildID magic
0a744663

In APL:

+2 ⎕nq '.' 'GetbuildID'
70a3446e

magicfile←'/opt/mdyalog/12.1/32/classic/p6/magic'
+2 ⎕nq '.' 'GetBuildID' magicfile

0a744663
)sh

$ echo $PPID
$ kill -11 $PPID
/opt/mdyalog/12.1/32/classic/p6/mapl[58]: 274434 Segmenta
tion fault(coredump)
$ strings -a -n14 core | grep BuildID=
BuildID=70a3446e

32

Index 33

Index

~

~/.dyalog 26

na UNIX 27

A

APL385 Unicode Font
downloading 11
intsalling 11

B

BuildID in saved files 31

C

Configuring the editor 19

D

Deinstalling
AIX 6
Linux/DEB 7
Linux/RPM 7
UNIX 6

E

Environment variables 12
AP search path 14
buffers and logifiles 16
commonly used 13
conga path 14

default workspace values 15
editor related 17-18
handle quadNA exception 14
I/O related 13
status window 13
workspace search path 14
workspace size 14

ERRORONEXTERNALEXCEPTION 14

I

Installation
AIX 3
Linux/DEB 4
Linux/RPM 3
mininal installation 5
non-default location 4
UNIX 2

L

Linux
APL font support 8-9
APL Keyboard

KDE4 8
APL Keyboard support

pre-2012 8
Unity 8
Linux console 8
Linux terminal window 8

M

Magic numbers
AIX 22
file command 22
UNIX 22

Magic numbers; Linux 22
MAXWS 14

P

PuTTY 11
configuring PuTTY 11
downloading and installing PuTTY 11

Index 34

R

RDP 10
Running from scripts 21

S

SALT UNIX 25
Session log

UNIX 30
Status window output

UNIX 30

U

UnicodeIME
downloading 11
installing 11

Upgrading
from earlier release 7

Upgrading APL 7
later version of same release 7

User Commands UNIX 25

V

VNC 10

W

WSPATH 14

